Age, Biography and Wiki

Richard O. Mines Jr. was born on 23 July, 1953 in Hot Springs, VA, is an engineer. Discover Richard O. Mines Jr.'s Biography, Age, Height, Physical Stats, Dating/Affairs, Family and career updates. Learn How rich is He in this year and how He spends money? Also learn how He earned most of networth at the age of 70 years old?

Popular As N/A
Occupation Civil/environmental engineer, academic, and author
Age 70 years old
Zodiac Sign Cancer
Born 23 July, 1953
Birthday 23 July
Birthplace Hot Springs, VA
Nationality

We recommend you to check the complete list of Famous People born on 23 July. He is a member of famous engineer with the age 70 years old group.

Richard O. Mines Jr. Height, Weight & Measurements

At 70 years old, Richard O. Mines Jr. height not available right now. We will update Richard O. Mines Jr.'s Height, weight, Body Measurements, Eye Color, Hair Color, Shoe & Dress size soon as possible.

Physical Status
Height Not Available
Weight Not Available
Body Measurements Not Available
Eye Color Not Available
Hair Color Not Available

Dating & Relationship status

He is currently single. He is not dating anyone. We don't have much information about He's past relationship and any previous engaged. According to our Database, He has no children.

Family
Parents Not Available
Wife Not Available
Sibling Not Available
Children Not Available

Richard O. Mines Jr. Net Worth

His net worth has been growing significantly in 2022-2023. So, how much is Richard O. Mines Jr. worth at the age of 70 years old? Richard O. Mines Jr.’s income source is mostly from being a successful engineer. He is from . We have estimated Richard O. Mines Jr.'s net worth , money, salary, income, and assets.

Net Worth in 2023 $1 Million - $5 Million
Salary in 2023 Under Review
Net Worth in 2022 Pending
Salary in 2022 Under Review
House Not Available
Cars Not Available
Source of Income engineer

Richard O. Mines Jr. Social Network

Instagram
Linkedin
Twitter
Facebook
Wikipedia
Imdb

Timeline

2007

Mines has completed 56 marathons in 25 states and run over 85,000 miles. He was inducted into the Bath County Athletic Hall of Fame in 2007.

2006

Mines has done significant research on biological wastewater treatment including activated sludge process, and biological nutrient removal processes (BNR). With a design team at Mercer University, he collaborated, and supervised the design of a residential anaerobic digester aimed at preventing food waste, and making energy as well. He has also modeled a BNR activated sludge system which indicated no significant difference between the predicted effluent values and the actual values, and analyzed the influence of temperature on the activated sludge process. In an in-depth review of wastewater collection system, he addressed all aspects of the collection system including wet weather control strategies, the design, and infrastructure modeling, odor control, and highlighted the innovation strategies as well. His research with colleagues evaluated the efficiency of ozonation for acid yellow 17 dye removal provided the evidence of its effectiveness. In the ozonation of synthetic dye wastewater, the efficiency of two empirical models to predict the parameters of color removal, and COD was evaluated. It was determined that ozonation is more effective in removing the acid yellow 17 dye than that of COD, and both the models can predict the process parameters, and ozone utilization. However, when the wastewater inlet properties are not homogenous, care must be taken to measure to removal efficiencies. According to his research focused on assessing the treatment of waste activated sludge with ozonation, and oxidation, it was reported that ozonation is more effective at removing the total solids (TS) and volatile solids (VS) than oxidation. As the contact time of ozonation increased, so did the biodegradability of wastewater. Having researched that, he developed a ten-liter semi-batch bubble column reactor in collaboration with a team of academics, and tested its operation by examining the ozonation of Waste Activated Sludge (WAS). Followed by that, he expanded his research on the design, and operation of a bench-scale ozonation wastewater treatment system by assessing the ozonation of raw industrial wastewater consisting of paper mill effluent and municipal wastewater from a water resource recovery facility (WRRF) in Georgia. After measuring numerous parameters, his research reported that the average COD removal for municipal wastewater was 82%, whereas for industrial wastewater, it was 84%. The average TSS removal was measured for both wastes, and it was noted to be 83%, and 81% respectively. While studying sludge, he has also focused his research on the sludge stabilization that examines the oxidation, and ozonation effectiveness in bench digestion studies. In a 2006 study, his research indicated ozonation to be more effective than oxidation in the 1-L bench-scale digestion study that reported the average removal rate of volatile suspended solids (VSS), and COD for both aerobic digestor, and ozonated digestor. Later on, using 2-L bench-scale digesters it was asserted that ozone is more efficient in removing total solids (TS) than that of oxidation.

2000

Another line of Mines' research focuses on advances made in environmental sciences and engineering education. Most of his educational research has been featured in the American Society for Engineering Education conference proceedings. Based on the advanced principles, he developed a complete environmental engineering curriculum in 2000. He was also involved in the 2010 service-learning program of Mercer University which focused on the water availability, and quality in a Kenyan community. The research concluded that a biological sand filter (BSF) is an effective mode of water treatment, and given the limited resources, the project's impact on the undergraduate learning program was considered significant. According to his research on the "inverted classroom" pedagogy, students preferred a hybrid teaching model that features both traditional lecture-based method and inverted pedagogy as well. However, it was shown that the results of subject study were dependent on the students' maturity and their self-motivation to become life-long learners. Another research study, described how the students in an engineering design course indicated their preference of digital story telling of design such as unit operations, and processes of water treatment plant in place of a term paper.

1995

Since 1995, Mines has served in several capacities in the ASEE Southeastern Section, such as Vice Chair of Civil Engineering Division, Chairman of Civil Engineering Division, Vice Chair of Instructional Division, Vice President of Instructional Unit, Secretary of Administrative Unit, Vice President of the Administrative Unit, President-Elect, President, Past- President, Secretary Administrative Division, Chair Administrative Division, Miriam-Wiley Award Committee, and Chair Awards and Recognition. He has also been an active member of ASCE since 1975 and was made a Fellow in 2007 and achieved Life Member status in 2018.

1977

Following his master's degree, Mines held appointment as a Second Lieutenant in U.S. Air Force stationed with the Virginia Air National Guard at Byrd Field in Richmond, Virginia. After his brief service in the Air Force, he began his academic career as an Instructor at Virginia Military Institute in 1977. He served there as Research Assistant at VMI Research Laboratories until 1978, and as an Instructor until 1979. In the following year, he joined Virginia Tech as Graduate Teaching Assistant, and served in this position until 1983. He held his next appointment as an Assistant Professor at the University of South Florida until 1985, and subsequently rejoined Virginia Military Institute as an Assistant Professor for a year. From 1992 until 1998, he served as an Assistant Professor in the Department of Civil and Environmental Engineering at the University of South Florida. Following this appointment, he joined Mercer University as an Associate Professor and Program Director of Environmental Engineering & Environmental Systems in 1998 and was promoted to Professor and Program Director of Environmental Engineering in 2005. He served there as Director of MSE/MS Programs and Professor of Environmental Engineering from 2008 to 2017, and as Professor of Environmental and Civil Engineering Department, and Civil Engineering Startup Coordinator from 2017 to 2022. Since 2017, he has been serving there as a Civil Engineering Startup Coordinator in School of Engineering. In 2021, he held a brief appointment as Chair and Professor of Environmental and Civil Engineering Department, and then, in June 2022, he became Emeritus Professor of Environmental and Civil Engineering at Mercer University.

1975

Mines received his bachelor's degree in Civil Engineering from Virginia Military Institute in 1975. While studying there, he worked for HARZA engineering as a soils technician on the Bath County Pumped Storage Project. During this period, he was enrolled in the Flight Instruction Program (FIP) to earn his Single-engine, land, Private Pilot's License. Upon graduation from Virginia Military Institute, he attended the University of Virginia, and obtained his master's degree in Civil Engineering in 1976. From 1980 until 1983, he studied at Virginia Polytechnic Institute and State University, and earned a Doctoral degree in Civil Engineering.

1953

Mines was born on July 23, 1953, in Hot Springs, Virginia, the eldest of three children born to Mr. and Mrs. Richard O. Mines. His father worked in the hotel management business (The Omni Homestead Resort and the Greenbrier) while his mother was a bank teller. He is a first-generation engineer as well as a first-generation college graduate.